Abstract
We have developed a wave-equation traveltime inversion method with multifrequency bands to invert for the shallow or intermediate subsurface velocity distribution. Similar to the classical wave-equation traveltime inversion, this method searches for the velocity model that minimizes the squared sum of the traveltime residuals using source wavelets with progressively higher peak frequencies. Wave-equation traveltime inversion can partially avoid the cycle-skipping problem by recovering the low-wavenumber parts of the velocity model. However, we also use the frequency information hidden in the traveltimes to obtain a more highly resolved tomogram. Therefore, we use different frequency bands when calculating the Fréchet derivatives so that tomograms with better resolution can be reconstructed. Results are validated by the zero-offset gathers from the raw data associated with moderate geometric irregularities. The improved wave-equation traveltime method is robust and merely needs a rough estimate of the starting model. Numerical tests on the synthetic and field data sets validate the above claims.
| Original language | English |
|---|---|
| Pages (from-to) | B305-B315 |
| Journal | Geophysics |
| Volume | 83 |
| Issue number | 6 |
| DOIs | |
| State | Published - 1 Nov 2018 |
| Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2018 Society of Exploration Geophysicists. All rights reserved.
Keywords
- Frequency
- Traveltime inversion
- Two-way traveltime
- Wave equation
ASJC Scopus subject areas
- Geophysics
- Geochemistry and Petrology