Water droplet can mitigate dust from hydrophobized micro-post array surfaces

Abba Abdulhamid Abubakar, Bekir Sami Yilbas*, Al Qahtani Hussain, Ghassan Hassan, Johnny Ebaika Adukwu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Water droplet rolling motion over the hydrophobized and optically transparent micro-post array surfaces is examined towards dust removal pertinent to self-cleaning applications. Micro-post arrays are replicated over the optically transparent polydimethylsiloxane (PDMS) surfaces. The influence of micro-post array spacing on droplet rolling dynamics is explored for clean and dusty surfaces. The droplet motions over clean and dusty micro-post array surfaces are monitored and quantified. Flow inside the rolling droplet is simulated adopting the experimental conditions. Findings reveal that micro-post gap spacing significantly influences droplet velocity on clean and dusty hydrophobized surfaces. Air trapped within the micro-post gaps acts like a cushion reducing the three-phase contact line and interfacial contact area of the rolling droplet. This gives rise to increased droplet velocity over the micro-post array surface. Droplet kinetic energy dissipation remains large for plain and micro-post arrays with small gap spacings. A Rolling droplet can pick up dust particles from micro-post array gaps; however, few dust residues are observed for large gap spacings. Nevertheless, dust residues are small in quantity over hydrophobized micro-post array surfaces.

Original languageEnglish
Article number18361
JournalScientific Reports
Volume11
Issue number1
DOIs
StatePublished - Dec 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Water droplet can mitigate dust from hydrophobized micro-post array surfaces'. Together they form a unique fingerprint.

Cite this