Transformational electronics: A powerful way to revolutionize our information world

Jhonathan P. Rojas, Galo A. Torres Sevilla, Mohamed T. Ghoneim, Aftab M. Hussain, Sally M. Ahmed, Joanna M. Nassar, Rabab R. Bahabry, Maha Nour, Arwa T. Kutbee, Ernesto Byas, Bidoor Al-Saif, Amal M. Alamri, Muhammad M. Hussain*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

With the emergence of cloud computation, we are facing the rising waves of big data. It is our time to leverage such opportunity by increasing data usage both by man and machine. We need ultra-mobile computation with high data processing speed, ultra-large memory, energy efficiency and multi-functionality. Additionally, we have to deploy energy-efficient multi-functional 3D ICs for robust cyber-physical system establishment. To achieve such lofty goals we have to mimic human brain, which is inarguably the world's most powerful and energy efficient computer. Brain's cortex has folded architecture to increase surface area in an ultra-compact space to contain its neuron and synapses. Therefore, it is imperative to overcome two integration challenges: (i) finding out a low-cost 3D IC fabrication process and (ii) foldable substrates creation with ultra-large-scale-integration of high performance energy efficient electronics. Hence, we show a low-cost generic batch process based on trench-protect-peel- recycle to fabricate rigid and flexible 3D ICs as well as high performance flexible electronics. As of today we have made every single component to make a fully flexible computer including non-planar state-of-the-art FinFETs. Additionally we have demonstrated various solid-state memory, movable MEMS devices, energy harvesting and storage components. To show the versatility of our process, we have extended our process towards other inorganic semiconductor substrates such as silicon germanium and III-V materials. Finally, we report first ever fully flexible programmable silicon based microprocessor towards foldable brain computation and wirelessly programmable stretchable and flexible thermal patch for pain management for smart bionics.

Original languageEnglish
Title of host publicationMicro- and Nanotechnology Sensors, Systems, and Applications VI
PublisherSPIE
ISBN (Print)9781628410204
DOIs
StatePublished - 2014
Externally publishedYes

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9083
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Keywords

  • 3D ICs
  • Brain computation
  • Bulk silicon (100)
  • Flexible electronics
  • Flexible microprocessor

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Transformational electronics: A powerful way to revolutionize our information world'. Together they form a unique fingerprint.

Cite this