Towards mountain fire safety using fire spread predictive analytics and mountain fire containment in iot environment

Imran, Naeem Iqbal, Shabir Ahmad, Do Hyeun Kim*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Mountains are popular tourist destinations due to their climate, fresh atmosphere, breath-taking sceneries, and varied topography. However, they are at times exposed to accidents, such as fire caused due to natural hazards and human activities. Such unforeseen fire accidents have a social, economic, and environmental impact on mountain towns worldwide. Protecting mountains from such fire accidents is also very challenging in terms of the high cost of fire containment resources, tracking fire spread, and evacuating the people at risk. This paper aims to fill this gap and proposes a three-fold methodology for fire safety in the mountains. The first part of the methodology is an optimization model for effective fire containment resource utilization. The second part of the methodology is a novel ensemble model based on machine learning, the heuristic approach, and principal component regression for predictive analytics of fire spread data. The final part of the methodology consists of an Internet of Things-based task orchestration approach to notify fire safety information to safety authorities. The proposed three-fold fire safety approach provides in-time information to safety authorities for making on-time decisions to minimize the damage caused by mountain fire with minimum containment cost. The performance of optimization models is evaluated in terms of execution time and cost. The particle swarm optimization-based model performs better in terms of cost, whereas the bat algorithm performs better in terms of execution time. The prediction models’ performance is evaluated in terms of root mean square error, mean absolute error, and mean absolute percentage error. The proposed ensemble-based prediction model accuracy for fire spread and burned area prediction is higher than that of the state-of-the-art algorithms. It is evident from the results that the proposed fire safety mechanism is a step towards efficient mountain fire safety management.

Original languageEnglish
Article number2461
Pages (from-to)1-23
Number of pages23
JournalSustainability
Volume13
Issue number5
DOIs
StatePublished - 1 Mar 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Fire containment
  • Fire spread notification
  • Fire spread prediction
  • Optimization
  • Predictive analysis

ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Environmental Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Hardware and Architecture
  • Computer Networks and Communications
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Towards mountain fire safety using fire spread predictive analytics and mountain fire containment in iot environment'. Together they form a unique fingerprint.

Cite this