Three-dimensional ordered FeTe-SmCoO3 nanocomposite: As efficient electrocatalyst for water oxidation

Tauseef Munawar, Ambreen Bashir, Salah M. El-Bahy, Chang Feng Yan*, Awais Khalid, Zeinhom M. El-Bahy, Nagina Naveed Riaz, Faisal Mukhtar, Sumaira Manzoor, Shoukat Alim Khan, Muammer Koc, Faisal Iqbal

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

In this work, FeTe-SmCoO3 is fabricated through a hydrothermal method and then coated on a stainless steel (SS) substrate to enhance the electrocatalytic performance. The crystal structure, surface chemical state, and morphological features of pure (FeTe and SmCoO3) and heterogeneous catalysts (FeTe-SmCoO3) are determined via XRD, XPS, and TEM/EDX techniques. The fabricated FeTe-SmCoO3 electrocatalyst is attributed to the particular morphological design resulting from the synergistic effect of FeTe and SmCoO3 phases. The as-developed high exposure level of active sites with structural transformation greatly promoted the oxidation property with an overpotential only of 199 mV to derive a current density of 10 mA/cm2, also observed a small Tafel slope of 72 mVdec−1 with extraordinary stability of 90 h. The modified heterogeneous catalyst provides outstanding catalytic behavior toward OER in the alkaline solution, due to flexibility and multiple accessible oxidation states of samarium, cobalt, and iron ions. The catalyst not only acquires additional reaction sites and opens up new channels through the dispersion of the metal centers, but also achieves quick electron transfer in FeTe-SmCoO3 nanocomposite through the interconnection between two phases.

Original languageEnglish
Article number174747
JournalJournal of Alloys and Compounds
Volume995
DOIs
StatePublished - 15 Aug 2024

Bibliographical note

Publisher Copyright:
© 2024 Elsevier B.V.

Keywords

  • Electrochemical oxygen evolution
  • FeTe-SmCoO
  • Heterogeneous electrocatalyst
  • SS substrate
  • Transition metal chalcogenide

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Three-dimensional ordered FeTe-SmCoO3 nanocomposite: As efficient electrocatalyst for water oxidation'. Together they form a unique fingerprint.

Cite this