TY - JOUR
T1 - Theoretical and experimental explored tailored hybrid H+/O2– ions conduction
T2 - Bridged for high performance fuel cell and water electrolysis
AU - Tayyab, Zuhra
AU - Rauf, Sajid
AU - Bilal Hanif, Muhammad
AU - Ahmad Qazi, Hafiz Imran
AU - Mushtaq, Naveed
AU - Motola, Martin
AU - Yun, Sining
AU - Xia, Chen
AU - Medvedev, Dmitry A.
AU - Asghar, Muhammad Imran
AU - Alodhayb, Abdullah N.
AU - Hussain, Arshad
AU - Majeed, Muhammad K.
AU - Iqbal, Rashid
AU - Saleem, Adil
AU - Xu, Wei
AU - Yang, Yatao
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/2/15
Y1 - 2024/2/15
N2 - A hybrid proton and oxide ion (H+/O2–) conducting electrolyte transports ions in multiple ways can operate at lower operating temperatures than a pure oxide ion conductor in solid oxide fuel cells (SOFCs). Here, a novel hybrid H+/O2– conductor is developed based on Ba0.5Sr0.5Zr0.9Y0.1O3-δ (BSZY) by Gd3+ doping. The Ba0.5Sr0.5Zr0.9-xGdxY0.1O3-δ (x = 0, 0.05, 0.1) electrolytes are modeled to construct crystal structures by density functional theory (DFT) calculations and subsequently synthesized, followed by physicochemical characterizations. The corresponding BSZGdxY electrolyte-based SOFCs are fabricated and investigated in terms of I-V characteristics, electrochemical impedance spectra, and durable operation. It is found Gd3+doping significantly enriches the oxygen vacancies and enhance the ionic conductivity of BSZGdxY. The DFT calculations provide evidence of high oxygen vacancies formation with the optimal doping of Gd with x = 0.1. Among the three samples, the Ba0.5Sr0.5Zr0.8Gd0.1Y0.1O3-δ (BSZGd0.1Y) electrolyte exhibits the highest fuel cell power density of 805 mW cm−2, hybrid H+/O2– conductivity of 0.17 S cm−1, and stable operation for 67 h at 520 °C. Further study finds that the BSZGd0.1Y electrolyte-based fuel cell can be operated under water electrolysis mode, revealing a high current density of 2.37 A cm−2 under 1.5 V at 520 °C. Moreover, the impact of Gd doping is studied in terms of electronic structure and energy bands investigated with the help of DFT calculations and the Schottky junction effect of the cell for electron blocking is investigated. This work demonstrates an efficient way to explore hybrid H+/O2– conduction in BSZY for high-performance SOFC and water electrolysis.
AB - A hybrid proton and oxide ion (H+/O2–) conducting electrolyte transports ions in multiple ways can operate at lower operating temperatures than a pure oxide ion conductor in solid oxide fuel cells (SOFCs). Here, a novel hybrid H+/O2– conductor is developed based on Ba0.5Sr0.5Zr0.9Y0.1O3-δ (BSZY) by Gd3+ doping. The Ba0.5Sr0.5Zr0.9-xGdxY0.1O3-δ (x = 0, 0.05, 0.1) electrolytes are modeled to construct crystal structures by density functional theory (DFT) calculations and subsequently synthesized, followed by physicochemical characterizations. The corresponding BSZGdxY electrolyte-based SOFCs are fabricated and investigated in terms of I-V characteristics, electrochemical impedance spectra, and durable operation. It is found Gd3+doping significantly enriches the oxygen vacancies and enhance the ionic conductivity of BSZGdxY. The DFT calculations provide evidence of high oxygen vacancies formation with the optimal doping of Gd with x = 0.1. Among the three samples, the Ba0.5Sr0.5Zr0.8Gd0.1Y0.1O3-δ (BSZGd0.1Y) electrolyte exhibits the highest fuel cell power density of 805 mW cm−2, hybrid H+/O2– conductivity of 0.17 S cm−1, and stable operation for 67 h at 520 °C. Further study finds that the BSZGd0.1Y electrolyte-based fuel cell can be operated under water electrolysis mode, revealing a high current density of 2.37 A cm−2 under 1.5 V at 520 °C. Moreover, the impact of Gd doping is studied in terms of electronic structure and energy bands investigated with the help of DFT calculations and the Schottky junction effect of the cell for electron blocking is investigated. This work demonstrates an efficient way to explore hybrid H+/O2– conduction in BSZY for high-performance SOFC and water electrolysis.
KW - Dual-ion conduction
KW - Gd-doped BaSrZrYO
KW - Schottky junction
KW - Solid oxide electrolysis cell
KW - Solid oxide fuel cell
KW - Theoretical calculation
UR - http://www.scopus.com/inward/record.url?scp=85183566839&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.148750
DO - 10.1016/j.cej.2024.148750
M3 - Article
AN - SCOPUS:85183566839
SN - 1385-8947
VL - 482
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 148750
ER -