Abstract
Fresh water is an essential resource for human life, but in many areas, the demand for it exceeds the available supply. Seawater desalination is crucial, particularly in the Middle East and North Africa (MENA) region where fresh water scarcity is particularly severe. Traditionally, desalination has been an energy-intensive process relying on the combustion of fossil fuels. However, the use of renewable energy sources for desalination provides a sustainable alternative that may effectively mitigate environmental damage and carbon emissions. The primary objective of this study is to investigate high utilization renewable energy systems that combine solar photovoltaic panels and wind turbines to generate 500,000 cubic meters per day of fresh water. The study is conducted utilizing the Hybrid Optimization of Multiple Energy Resources (HOMER) software. The optimal hybrid system, comprising PV panels, wind turbines, and batteries attains the lowest levelized cost of energy (LCOE) at $0.321/kWh, corresponding to a levelized cost of water (LCOW) ranging from $2.157 to $2.277/m3. Furthermore, the surplus renewable energy generated due to hourly demand-supply mismatch was used for producing hydrogen from the desalinated water with an annual production of 31,547 metric tons and a levelized cost of hydrogen (LCOH) of less than $1.059/kg.
Original language | English |
---|---|
Article number | 122264 |
Journal | Renewable Energy |
Volume | 241 |
DOIs | |
State | Published - Mar 2025 |
Bibliographical note
Publisher Copyright:© 2024 Elsevier Ltd
Keywords
- Desalination
- Hydrogen production
- NEOM
- PV
- Sustainability
- Wind turbine
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment