Surfactant Adsorption Isotherms: A Review

Shams Kalam, Sidqi A. Abu-Khamsin*, Muhammad Shahzad Kamal, Shirish Patil*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

292 Scopus citations

Abstract

The need to minimize surfactant adsorption on rock surfaces has been a challenge for surfactant-based, chemical-enhanced oil recovery (cEOR) techniques. Modeling of adsorption experimental data is very useful in estimating the extent of adsorption and, hence, optimizing the process. This paper presents a mini-review of surfactant adsorption isotherms, focusing on theories of adsorption and the most frequently used adsorption isotherm models. Two-step and four-region adsorption theories are well-known, with the former representing adsorption in two steps, while the latter distinguishes four regions in the adsorption isotherm. Langmuir and Freundlich are two-parameter adsorption isotherms that are widely used in cEOR studies. The Langmuir isotherm is applied to monolayer adsorption on homogeneous sites, whereas the Freundlich isotherm suites are applied to multilayer adsorption on heterogeneous sites. Some more complex adsorption isotherms are also discussed in this paper, such as Redlich-Peterson and Sips isotherms, both involve three parameters. This paper will help select and apply a suitable adsorption isotherm to experimental data.

Original languageEnglish
Pages (from-to)32342-32348
Number of pages7
JournalACS Omega
Volume6
Issue number48
DOIs
StatePublished - 7 Dec 2021

Bibliographical note

Publisher Copyright:
© 2021 The Authors. Published by American Chemical Society

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'Surfactant Adsorption Isotherms: A Review'. Together they form a unique fingerprint.

Cite this