Steering of flexible needles combining kinesthetic and vibratory force feedback

Claudio Pacchierotti*, Momen Abayazid, Sarthak Misra, Domenico Prattichizzo

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Needle insertion in soft-tissue is a minimally invasive surgical procedure which demands high accuracy. In this respect, robotic systems with autonomous control algorithms have been exploited as the main tool to achieve high accuracy and reliability. However, for reasons of safety and acceptance by the surgical community, autonomous robotic control is not desirable. Thus, it is necessary to focus more on techniques enabling clinicians to directly control the motion of surgical tools. In this work we address that challenge and present a novel teleoperated robotic system able to steer flexible needles. The proposed system tracks the position of the needle using an ultrasound imaging system, and, from that, it computes needle's ideal position and orientation to reach a given target. The master haptic interface then provides mixed kinesthetic-vibratory navigation cues about this ideal position and orientation to the clinician as she steers the needle. Six subjects carried out an experiment of teleoperated needle insertion into a soft-tissue phantom. They showed a mean targeting error of 1.36 mm. An additional experiment of remote teleoperation has been carried out to highlight the passivity-based stability of the proposed system.

Original languageEnglish
Title of host publicationIROS 2014 Conference Digest - IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1202-1207
Number of pages6
ISBN (Electronic)9781479969340
DOIs
StatePublished - 31 Oct 2014
Externally publishedYes
Event2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2014 - Chicago, United States
Duration: 14 Sep 201418 Sep 2014

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2014
Country/TerritoryUnited States
CityChicago
Period14/09/1418/09/14

Bibliographical note

Publisher Copyright:
© 2014 IEEE.

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Steering of flexible needles combining kinesthetic and vibratory force feedback'. Together they form a unique fingerprint.

Cite this