Solar hydrogen production: Technoeconomic analysis of a concentrated solar-powered high-temperature electrolysis system

Hafiz Ali Muhammad, Mujahid Naseem, Jonghwan Kim, Sundong Kim, Yoonseok Choi, Young Duk Lee*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Hydrogen is considered a key energy vector and carrier for the decarbonization of global energy systems. However, the economics of green hydrogen systems hinder their widespread application. This paper presents a techno-economic analysis of a green hydrogen production system using high-temperature water electrolysis integrated with a concentrated solar power system (CSP-SOEC) for Western Australia. Real-time solar resource data with 30-min resolution for a typical meteorological year were used to assess the performance of the entire system. The intermittent nature of solar resources is accounted for by integrating the system with a thermal energy storage medium and performing the analysis in off-design mode. The validity of the electrolysis stack model is crucial for overall system performance, which was confirmed through experimental testing conducted on a 15-cell stack. The system was designed to generate a 1 MWe output, and the results showed that a field area of 29,000 m2 and thermal energy storage capacity of 382,500 kWh can fulfil the design criteria. The system generates 0.86 tonne/day of hydrogen at a cost of 8.87 US$/kg-H2 with a solar-to-hydrogen efficiency of 13.80 %. The cost breakdown revealed that the storage medium has the most significant contribution. Moreover, the sensitivity of the system to the production capacity was analyzed, which showed that larger-scale hydrogen production systems have the potential to further reduce the cost. An 8 MWe system has the capacity to produce 7.18 tonne/day of hydrogen at a cost of 6.1 US$/kg-H2. The molten salt is currently utilized only 39.3 % for the hydrogen production process. To optimize resource utilization, a cogeneration system is devised and assessed for simultaneous steam and hydrogen production. The results reveal that the cogeneration system can achieve an LCOH reduction of 9 % by reaching 8.07 US$/kg-H2. These findings are invaluable for academic and industry stakeholders in making informed decisions and fostering the green hydrogen sector in Australia.

Original languageEnglish
Article number131284
JournalEnergy
Volume298
DOIs
StatePublished - 1 Jul 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2024

Keywords

  • Concentrated solar power
  • Economics
  • Green hydrogen
  • Solid-oxide electrolysis-cell

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Modeling and Simulation
  • Renewable Energy, Sustainability and the Environment
  • Building and Construction
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Pollution
  • Mechanical Engineering
  • General Energy
  • Management, Monitoring, Policy and Law
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Solar hydrogen production: Technoeconomic analysis of a concentrated solar-powered high-temperature electrolysis system'. Together they form a unique fingerprint.

Cite this