Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO2 conversion using sustainable coal-char/polymeric-g-C3N4/RGO metal-free nano-hybrids

Amit Kumar*, Ajay Kumar, Gaurav Sharma, Mu Naushad, Renato Cataluna Veses, Ayman A. Ghfar, Florian J. Stadler, Mohammad Rizwan Khan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

95 Scopus citations

Abstract

Herein, we report the synthesis of a metal-free coal-char supported polymeric g-C3N4/RGO (RPC) nano-photocatalyst for the efficient solar powered degradation of the noxious emerging pollutants ciprofloxacin (CIF) & β-estradiol (ESD) and conversion of CO2 into CH4, CO & O2. RPC shows good photocatalytic and adsorption activity owing to its high surface area and reduced charge recombination rate. The photodegradation results of the treated water sample were investigated in terms of reaction kinetics, active species trapping experiments, high resolution mass spectrometry (HR-MS) and Chemical Oxygen Demand (COD) analysis. The higher solar photoactivity is attributed to the higher surface area, higher visible absorption, charge transfer, and reduced recombination. The superoxide radical anions were found to be the major active species in photodegradation, which is also supported by the band structure analysis. The catalytic activity is highly enhanced by the addition of H2O2, O2 and O3 as they facilitate the formation of radicals. The possible degradation pathways for the degradation of CIF and ESD have been proposed. This work shows promising solar-active metal-free photocatalysts for efficient environmental remediation and CO2 conversion to fuels.

Original languageEnglish
Pages (from-to)10208-10224
Number of pages17
JournalNew Journal of Chemistry
Volume41
Issue number18
DOIs
StatePublished - 2017
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO2 conversion using sustainable coal-char/polymeric-g-C3N4/RGO metal-free nano-hybrids'. Together they form a unique fingerprint.

Cite this