Abstract
This study investigates the use of building-integrated photovoltaics (BIPVs) as shading devices in hot climates, with reference to the conditions of Saudi Arabia. It used parametric numerical modelling to critically appraise the potential of eight design configurations in this regard, including vertical and horizontal shading devices with different inclination angles. The study assumed that the examined shading devices could be entirely horizontal or vertical on the three exposed facades, which is common practice in architecture. The study found that the examined configurations offered different solar and shading potentials. However, the case of horizontal BIPV shading devices with a 45° tilt angle received the highest amount of annual total insolation (104 kWh/m2) and offered effective window shading of 96% of the total window area on average in summer. The study concluded that, unlike the common recommendation of avoiding horizontal shading devices on eastern and western facades, it is possible in countries characterised with high solar altitudes such as Saudi Arabia to use them effectively to generate electricity and provide the required window shading.
Original language | English |
---|---|
Article number | 4373 |
Journal | Sustainability |
Volume | 10 |
Issue number | 12 |
DOIs | |
State | Published - 23 Nov 2018 |
Bibliographical note
Publisher Copyright:© 2018 by the authors.
Keywords
- Architecture
- Building-integrated photovoltaics (BIPVs)
- Saudi Arabia
- Shading devices
- Solar energy
ASJC Scopus subject areas
- Geography, Planning and Development
- Renewable Energy, Sustainability and the Environment
- Environmental Science (miscellaneous)
- Energy Engineering and Power Technology
- Management, Monitoring, Policy and Law