Role of Post-Hydrothermal Treatment on the Microstructures and Photocatalytic Activity of TiO2-Based Nanotubes

Mohammad Qamar*, Shabi Abbas Zaidi, Mohd Rafatullah*, Mohammad Qutob, Sun Jae Kim, Qasem A. Drmosh

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

The present study demonstrates the thermal stability and photocatalytic activity of TiO2-based nanotubes with respect to post-hydrothermal treatment. Titanate nanotubes were synthesized by adapting an alkali hydrothermal method from TiO2sol using NaOH as a catalyst. The effect of post-hydrothermal heating on the properties—such as structure, morphology, textural properties, and activity—of as-synthesized one-dimensional titania nanostructure is investigated in detail. The characterizations are carried out using SEM, EDX, TEM, XRD, and a BET surface area analyzer. When heated in the presence of water in an autoclave, the protonated titanate phase of the nanotubes converts to anatase phase. Meanwhile, the tubular morphology is gradually lost as the post-hydrothermal heating duration increases. The photocatalytic activity was assessed utilizing the photo-oxidation of an amaranth dye. It is discerned that the as-prepared nanotubes are photocatalytically inactive but become active after post-hydrothermal processing. The activity trend follows the formation of the active phase—the titanate phase crystallizes into a photocatalytically-active anatase phase during post-hydrothermal heating. The effect of experimental parameters, such as reaction pH, dye concentration, and amount of catalyst, on the dye removal is studied. The findings also highlight that the role of holes/OH•− is more prominent as compared to conduction band electron/O2•− for the removal of the dye. In addition, the photocatalyst exhibited excellent stability and reusability.

Original languageEnglish
Article number702
JournalCatalysts
Volume12
Issue number7
DOIs
StatePublished - Jul 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • hydrothermal synthesis
  • nanotubes
  • photocatalysis
  • titanate
  • titanium dioxide

ASJC Scopus subject areas

  • Catalysis
  • General Environmental Science
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Role of Post-Hydrothermal Treatment on the Microstructures and Photocatalytic Activity of TiO2-Based Nanotubes'. Together they form a unique fingerprint.

Cite this