Removal of Pb2+ from water using the carbon nanotube-g-poly[(sodium methacrylate)-co- 2-(methacryloyloxy)ethyl acetoacetate]: experimental investigation and modeling

Mohammad Abu Jafar Mazumder, Imran Rahman Chowdhury, Shakhawat Chowdhury*, Amir Al-Ahmed

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

A solid polymer, poly[(sodium methacrylate)-co-2-(methacryloyloxy)ethyl acetoacetate], p(MAA-co-MEAA) was synthesized and then grafted onto carbon nanotubes to prepare poly(MAA-co-MEAA)-grafted carbon nanotubes [CNT-g-p(MAA-co-MEAA)]. NMR, TGA, and FT-IR characterized the synthesized polymers and adsorbents. SEM-EDX was used to investigate the surface characteristics of the adsorbents. Pb2+ was removed from the aqueous solution using the CNT-g-p(MAA-co-MEAA). A batch adsorption experiment was performed at different Pb2+ concentrations (1, 10, 25, 50 mg/L), pH (4 and 6.75), temperature (25 and 35 °C), and contact periods (1, 5, 20, 60, and 1440 min) to study the adsorption kinetics and isotherm. The adsorbent dose of 2.5 g/L could effectively lower the initial Pb2+ concentration of 1000 to 2 ppb. The maximum adsorption capacity of the adsorbent was found to be 1178 mg/g. In addition, the adsorbents have been shown to effectively reduce the coexisting metal ion concentrations from industrial wastewater, which indicated the potential of the proposed adsorbent in removing metal ions from coexisting metals containing wastewater. To predict the adsorption efficiency of Pb2+, various linear, non-linear, and neural network models were established. An additional data set, not incorporated in model training, was used to validate the models. A number of models showed excellent performance with R2 in the range of 0.89–0.98. In model validation studies, the correlation coefficients (r) ranged from 0.94 to 0.99. The novel adsorbent and models will most likely aid in the development of a robust treatment technique for removing Pb2+ ions from water and wastewater.

Original languageEnglish
Pages (from-to)54432-54447
Number of pages16
JournalEnvironmental Science and Pollution Research
Volume29
Issue number36
DOIs
StatePublished - Aug 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords

  • Adsorption isotherm
  • Adsorption kinetics
  • CNT adsorbent
  • Models
  • Pb ion removal
  • Responsible editor: Angeles Blanco
  • Water and wastewater treatment

ASJC Scopus subject areas

  • Environmental Chemistry
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Removal of Pb2+ from water using the carbon nanotube-g-poly[(sodium methacrylate)-co- 2-(methacryloyloxy)ethyl acetoacetate]: experimental investigation and modeling'. Together they form a unique fingerprint.

Cite this