Radiation shielding performance of heavy-weight concrete mixtures

Mukhtar Oluwaseun Azeez, Shamsad Ahmad*, Salah U. Al-Dulaijan, Mohammed Maslehuddin, Akhtar Abbas Naqvi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

In the present work, an experimental investigation was carried out to evaluate the radiation shielding performance of heavy-weight concrete mixtures prepared using different high-density coarse aggregates that included steel slag, steel shot, and iron ore. Normal-weight limestone aggregate was also used in control mixture as well as for partial replacement of the high-density aggregates in some of the heavy-weight concrete mixtures. Considering different combinations of the normal and high-density coarse aggregates and keeping cement content and water/cement ratio constant, a total of nineteen heavy-weight concrete mixtures were prepared and tested for their dry-density, compressive strength, and nuclear radiation response through gamma-ray intensity measurement. Except the control mixture containing normal-weight limestone aggregate, all eighteen heavy-weight concrete mixtures achieved 28-day dry unit weight in the acceptable range of 2600–3563 kg/m3. The compressive strength of the mixtures varied in the range of 26–45 MPa, all satisfying the requirements of a structural concrete. Radiation shielding performance was influenced by the unit weight of the concrete mixtures regardless of the type of coarse aggregates and the strength class of the concrete mixture. Based on the experimental data, correlations between indicator of the radiation shielding performance and unit-weight of concrete was obtained with a high degree of fit.

Original languageEnglish
Pages (from-to)284-291
Number of pages8
JournalConstruction and Building Materials
Volume224
DOIs
StatePublished - 10 Nov 2019

Bibliographical note

Publisher Copyright:
© 2019

Keywords

  • Gamma-ray
  • Heavy-weight concrete
  • High-density aggregates
  • Linear attenuation
  • Radiation shielding

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction
  • General Materials Science

Fingerprint

Dive into the research topics of 'Radiation shielding performance of heavy-weight concrete mixtures'. Together they form a unique fingerprint.

Cite this