PU-Transformer: Point Cloud Upsampling Transformer

Shi Qiu*, Saeed Anwar, Nick Barnes

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

Given the rapid development of 3D scanners, point clouds are becoming popular in AI-driven machines. However, point cloud data is inherently sparse and irregular, causing significant difficulties for machine perception. In this work, we focus on the point cloud upsampling task that intends to generate dense high-fidelity point clouds from sparse input data. Specifically, to activate the transformer’s strong capability in representing features, we develop a new variant of a multi-head self-attention structure to enhance both point-wise and channel-wise relations of the feature map. In addition, we leverage a positional fusion block to comprehensively capture the local context of point cloud data, providing more position-related information about the scattered points. As the first transformer model introduced for point cloud upsampling, we demonstrate the outstanding performance of our approach by comparing with the state-of-the-art CNN-based methods on different benchmarks quantitatively and qualitatively.

Original languageEnglish
Title of host publicationComputer Vision – ACCV 2022 - 16th Asian Conference on Computer Vision, 2022, Proceedings
EditorsLei Wang, Juergen Gall, Tat-Jun Chin, Imari Sato, Rama Chellappa
PublisherSpringer Science and Business Media Deutschland GmbH
Pages326-343
Number of pages18
ISBN (Print)9783031263187
DOIs
StatePublished - 2023
Externally publishedYes
Event16th Asian Conference on Computer Vision, ACCV 2022 - Macao, China
Duration: 4 Dec 20228 Dec 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13841 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th Asian Conference on Computer Vision, ACCV 2022
Country/TerritoryChina
CityMacao
Period4/12/228/12/22

Bibliographical note

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'PU-Transformer: Point Cloud Upsampling Transformer'. Together they form a unique fingerprint.

Cite this