Abstract
In this paper, a multiuser mixed radio frequency (RF) and hybrid free-space optical (FSO)/RF system is considered, where multiple mobile users transmit their data to an intermediate decode-and-forward relay node through RF links using a virtual multiple-input multipleoutput (MIMO) system, and the relay node forwards the multiplexed data of all users through a FSO link that is supported by a RF MIMO backup system to the destination. The relay node is equipped with a buffer in the physical layer for temporal storage of the users' data until the best channel conditions at the relay-destination link aremet. For this communication setup, we first propose a transmission protocol that achieves a multiplexing gain through a virtual MIMO system. After that, we derive closed-form expressions for the end-to-end outage probability, asymptotic outage probability, average symbol error rate, and the ergodic capacity when considering the delay-tolerant (finite buffer size) scenario. The results show that buffering in the physical layer provides a significant enhancement to the system performance (outage, error rate, and ergodic capacity). It is also found that pointing error and severe weather turbulence conditions become more tolerable with the existence of the relay's buffer and RF backup link (in the second hop). In addition, the proposed virtual MIMO scheme shows a significant performance enhancement at a high number of receiving antennas, which introduces potential lowcomplexity diversity gain-based massive MIMO schemes.
Original language | English |
---|---|
Pages (from-to) | 309-321 |
Number of pages | 13 |
Journal | Journal of Optical Communications and Networking |
Volume | 10 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2018 |
Bibliographical note
Publisher Copyright:© 2009-2012 OSA.
Keywords
- Backhaul link
- Buffer-aided relaying
- Ergodic capacity
- Error rate
- Hybrid FSO/RF
- Mixed RF/FSO relay network
- Rayleigh fading
- Unified Gamma-Gamma fading
ASJC Scopus subject areas
- Computer Networks and Communications