Abstract
Three-dimensional printing (3DP), known as additive layer manufacturing (ALM), is a manufacturing process in which a three-dimensional structure is constructed by successive addition of deposited layers. Fused Deposition Modeling (FDM) has evolved as the most frequently utilized ALM process because of its cost-effectiveness and ease of operation. Nevertheless, layer adhesion, delamination, and quality of the finished product remain issues associated with the FDM process parameters. These issues need to be addressed in order to satisfy the requirements commonly imposed by the conventional manufacturing industry. This work is focused on the optimization of the FDM process and post-process parameters for Polylactic acid (PLA) samples in an effort to maximize their tensile strength. Infill density and pattern type, layer height, and print temperature are the process parameters, while annealing temperature is the post-process parameter considered for the investigation. Analysis based on the Taguchi L18 orthogonal array shows that the gyroid infill pattern and annealing cycle at 90 °C results in a maximum ultimate tensile strength (UTM) of 37.15 MPa. Furthermore, the regression model developed for the five variables under study was able to predict the UTS with an accuracy of more than 96%.
Original language | English |
---|---|
Article number | 4370 |
Journal | Polymers |
Volume | 15 |
Issue number | 22 |
DOIs | |
State | Published - Nov 2023 |
Bibliographical note
Publisher Copyright:© 2023 by the authors.
Keywords
- 3D printing
- PLA
- Taguchi optimization
- fused deposition modelling
- tensile strength
ASJC Scopus subject areas
- General Chemistry
- Polymers and Plastics