Prediction of non-hydrocarbon gas components in separator by using Hybrid Computational Intelligence models

Tarek Helmy*, Muhammad Imtiaz Hossain, Abdulazeez Adbulraheem, S. M. Rahman, Md Rafiul Hassan, Amar Khoukhi, M. Elshafei

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


Accurate prediction of non-hydrocarbon (Non-HC) gas components in the gas-oil separators reduces the cost of gas and oil production in petroleum engineering. However, this task is difficult because there is no known relation among the properties of crude oil and the separators. There are studies that attempt to predict hydrocarbons (HCs) components using either Computational Intelligence (CI) techniques or conventional techniques like Equitation-of-State (EOS) and Empirical Correlation (EC). In this paper, we explore the applicability of CI techniques such as Artificial Neural Network, Support Vector Regressions, and Adaptive Neuro-Fuzzy Inference System to predict the Non-HC gas components in gas-oil separator tank. Further, we incorporate Genetic Algorithms (GA) into the Hybrid Computational Intelligence (HCI) models to enhance the accuracy of prediction. GA is used to determine the most favorable values of the tuning parameters in the CI models. The performances of the CI and HCI models are compared with the performance of the conventional techniques like EOS and EC. The experimental results show that accuracy of prediction by CI and HCI models outperform the conventional methods for N2 and H2S gas components. Furthermore, the HCI models perform better than the non-optimized CI models while predicting the Non-HC gas components.

Original languageEnglish
Pages (from-to)635-649
Number of pages15
JournalNeural Computing and Applications
Issue number4
StatePublished - 1 Apr 2017

Bibliographical note

Funding Information:
This research is funded by King Abdulaziz City for Science and Technology (KACST) through the Science and Technology Unit at KFUPM under the Project No GSP-18-101. The authors would like to thank Dr. Saifur Rahman, Mr. Nofal, Mr. Fatai, Mr. Shujath and Mr. Nizamuddin of the Research Institute and Mr. Mohammadain of Petroleum Engineering department at King Fahd University of Petroleum and Minerals (KFUPM) for suggestion and valuable comments. Warm regards to Dr. Jaubert [] for providing a part of the data. Thanks are extended to KFUPM for providing the supporting research facilities.

Publisher Copyright:
© 2015, The Natural Computing Applications Forum.


  • Adaptive Neuro-Fuzzy System
  • Artificial Neural Network
  • Genetic Algorithms
  • Hybrid Computational Intelligence
  • Non-HC gas components prediction
  • Support Vector Regression

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence


Dive into the research topics of 'Prediction of non-hydrocarbon gas components in separator by using Hybrid Computational Intelligence models'. Together they form a unique fingerprint.

Cite this