Abstract
The shelf life of bakery products highly depends on the environment and it may get spoiled earlier than its expiry which results in food-borne diseases and may affect human health or may get wasted beforehand. The traditional spoilage detection methods are time-consuming and destructive in nature due to the time taken to get microbiological results. To the best of the author’s knowledge, this work presents a novel method to automatically predict the microbial spoilage and detect its spatial location in baked items using Hyperspectral Imaging (HSI) range from 395 − 1000 nm. A spectral preserve fusion technique has been proposed to spatially enhance the HSI images while preserving the spectral information. Furthermore, to automatically detect the spoilage, Principal Component Analysis (PCA) followed by K-means and SVM has been used. The proposed approach can detect the spoilage almost 24 hours before it started appearing or visible to a naked eye with 98.13% accuracy on test data. Furthermore, the trained model has been validated through external dataset and detected the spoilage almost a day before it started appearing visually.
| Original language | English |
|---|---|
| Pages (from-to) | 176986-176996 |
| Number of pages | 11 |
| Journal | IEEE Access |
| Volume | 8 |
| DOIs | |
| State | Published - 2020 |
| Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
Keywords
- Fungus detection and prediction
- Hyper sharpening
- K-means
- PCA
- SVM
- Shelf life of bakery products
ASJC Scopus subject areas
- General Computer Science
- General Materials Science
- General Engineering