Polyoxometalate-assisted formation of CoSe/MoSe 2 heterostructures with enhanced oxygen evolution activity

Menglei Yuan, Sobia Dipazir, Meng Wang, Yu Sun, Denglei Gao, Yiling Bai, Min Zhang, Peilong Lu, Hongyan He, Xiangyang Zhu, Shuwei Li, Zhanjun Liu, Zhaopeng Luo, Guangjin Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

108 Scopus citations

Abstract

The oxygen evolution reaction (OER) is a half reaction of electrochemical water splitting that suffers from a kinetically sluggish four-electron process, and it is regarded as the efficiency-limiting step in water splitting. Herein, heterostructures of CoSe (cobalt selenide) nanoparticles and MoSe 2 (molybdenum selenide) nanosheets (CoSe/MoSe 2 hybrids) were fabricated through a non-metal-induced growth method. Due to the increase in the effective specific area and the electron transfer ability caused by the formation of the heterogeneous interface, the obtained CoSe/MoSe 2 hybrids show superior OER performance (η = 262 mV at 10 mA cm −2 ) and long-term stability (20 h for continuous testing) as compared to pure CoSe, MoSe 2 and physically mixed CoSe and MoSe 2 . Schematic energy band diagrams derived from ultraviolet photoelectron spectroscopy results further confirmed the electronic modulation between CoSe and MoSe 2 and revealed that the d-band center of CoSe/MoSe 2 hybrids moved closer to the Fermi level, giving rise to high charge carrier density and low intermediate adsorption energy as compared to CoSe and MoSe 2 . This work provides some insight into the design and synthesis of heterostructured nanomaterials from the MOF precursors.

Original languageEnglish
Pages (from-to)3317-3326
Number of pages10
JournalJournal of Materials Chemistry A
Volume7
Issue number7
DOIs
StatePublished - 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© The Royal Society of Chemistry.

ASJC Scopus subject areas

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Fingerprint

Dive into the research topics of 'Polyoxometalate-assisted formation of CoSe/MoSe 2 heterostructures with enhanced oxygen evolution activity'. Together they form a unique fingerprint.

Cite this