Abstract
Background: We have initiated an effort to exhaustively map interactions between HTLV-1 Tax and host cellular proteins. The resulting Tax interactome will have significant utility toward defining new and understanding known activities of this important viral protein. In addition, the completion of a full Tax interactome will also help shed light upon the functional consequences of these myriad Tax activities. The physical mapping process involved the affinity isolation of Tax complexes followed by sequence identification using tandem mass spectrometry. To date we have mapped 250 cellular components within this interactome. Here we present our approach to prioritizing these interactions via an in silico culling process. Results: We first constructed an in silico Tax interactome comprised of 46 literature-confirmed protein-protein interactions. This number was then reduced to four Tax-interactions suspected to play a role in DNA damage response (Rad51, TOP1, Chk2, 53BP1). The first-neighbor and second-neighbor interactions of these four proteins were assembled from available human protein interaction databases. Through an analysis of betweenness and closeness centrality measures, and numbers of interactions, we ranked proteins in the first neighborhood. When this rank list was compared to the list of physical Tax-binding proteins, DNA-PK was the highest ranked protein common to both lists. An overlapping clustering of the Tax-specific second-neighborhood protein network showed DNA-PK to be one of three bridge proteins that link multiple clusters in the DNA damage response network. Conclusion: The interaction of Tax with DNA-PK represents an important biological paradigm as suggested via consensus findings in vivo and in silico. We present this methodology as an approach to discovery and as a means of validating components of a consensus Tax interactome.
| Original language | English |
|---|---|
| Article number | 92 |
| Journal | Retrovirology |
| Volume | 5 |
| DOIs | |
| State | Published - 15 Oct 2008 |
| Externally published | Yes |
Bibliographical note
Funding Information:We thank Kurt Maly and Mohammed Zubair of Old Dominion University, our collaborators on the Human Virus Interactome Resource (HVIR) project, who designed a digital library for representing protein interactions involving viral and human proteins. This study was supported, in part, by the United States Public Service Grant CA076595 from the National Cancer Institute, National Institutes of Health, awarded to OJS and a multi-disciplinary research initiative grant from the Old Dominion University Research Foundation, awarded to AP, CO, and OJS.
ASJC Scopus subject areas
- Virology
- Infectious Diseases