Abstract
A few new hybrid electrode materials have been synthesized and immobilized for the next-generation energy storage device. The hybrid electrodes PVMo11-TBA, PVMo11-BTA, PVMo11-TBP, PVMo11-TBA-PPy, PVMo11-BTA-PPy, and PVMo11-TBP-PPy were well characterized by NMR, XRD, FTIR, FESEM, BET, and tested for electrochemical performance. Among these hybrid electrode materials, the PVMo11-TBA-PPy electrode shows a high specific capacitance of 144.37 F/g at a 1A/g current density and incredible power and energy density of 1100.16 W/kg and 15.28 Wh/kg, respectively. The high electrode’s capacitance was due to the synergistic effect between the PPy and TBA-PVMo11 and high ionic diffusion compared with other synthesized electrodes. It also exhibited high cycle stability of 72.78% after 4500 cycles at 1 M H2SO4 electrolyte. The EIS offers a lower ESR value of 0.72 ohms for the PVMo11-TBA-PPy than PVMo11-TBA, indicating the rapid charge/discharge rate. On the other hand, the PVMo11-BTA-PPy and PVMo11-TBP-PPy electrodes showed lower capacitance values of 26.98 and 19.53. F/g at 0.4 and 1 A/g current density, respectively. Lowering the capacitance could be the prevention of the interaction of organic cations with the counter polyanion.
Original language | English |
---|---|
Pages (from-to) | 4023-4035 |
Number of pages | 13 |
Journal | Ionics |
Volume | 27 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Keywords
- Energy density
- Ionic liquids
- Phosphovanadomolybdic acid
- Polypyrrole
- Supercapacitors
ASJC Scopus subject areas
- General Chemical Engineering
- General Materials Science
- General Engineering
- General Physics and Astronomy