Abstract
The catalytic co-cracking of 2.5–10 wt% low-density polyethylene (LDPE) in heavy vacuum gas oil (HVGO) was carried out in a fixed-bed microactivity test (MAT) unit and studies on the effect of LDPE loading, cracking temperature and nature of zeolite catalyst generated reasonable data that were used to model HVGO/LDPE conversion and naphtha yield using four metaheuristic-based nature inspired optimization algorithms. Using 13 different input parameters into the data mining, less dominant variables with < 0.49 correlation co-efficient to the targets were filtered out. The effect of deterministic based feature on variable filtering prior to modeling stage was conducted for both HVGO/LDPE conversion and naphtha yield. The prediction performance of the developed models in both training and testing was evaluated using the mean square error (MSE), root mean square error (RMSE), coefficients of correlation (R) and determination (R2). Among the four algorithms, GPR-BO showed highest conversion prediction performance for both data training and testing, with MSE = 1.14 × 10−9 and 2.02 × 10−9, RMSE = 3.37 × 10−5 and 4.62 × 10−5, R2 and R = 1.00 respectively. For naphtha yield prediction, the ANN-PSO showed highest performance for both data training and testing, with MSE = 0.020 and 0.0663, RMSE = 0.143 and 0.189, R2 and R = 1.00 respectively.
Original language | English |
---|---|
Article number | 106958 |
Journal | Process Safety and Environmental Protection |
Volume | 196 |
DOIs | |
State | Published - Apr 2025 |
Bibliographical note
Publisher Copyright:© 2025 The Institution of Chemical Engineers
Keywords
- Catalytic cracking
- Conversion
- Feature engineering
- HVGO
- Metaheuristic algorithms
- Naphtha yield
ASJC Scopus subject areas
- Environmental Engineering
- Environmental Chemistry
- General Chemical Engineering
- Safety, Risk, Reliability and Quality