Abstract
Data-driven methods usually require a large amount of labelled data for training and generalization, especially in medical imaging. Targeting the colonoscopy field, we develop the Optical Flow Generative Adversarial Network (OfGAN) to transform simulated colonoscopy videos into realistic ones while preserving annotation. The advantages of our method are three-fold: the transformed videos are visually much more realistic; the annotation, such as optical flow of the source video is preserved in the transformed video, and it is robust to noise. The model uses a cycle-consistent structure and optical flow for both spatial and temporal consistency via adversarial training. We demonstrate that the performance of our OfGAN overwhelms the baseline method in relative tasks through both qualitative and quantitative evaluation.
Original language | English |
---|---|
Title of host publication | Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings |
Editors | Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 732-741 |
Number of pages | 10 |
ISBN (Print) | 9783030597153 |
DOIs | |
State | Published - 2020 |
Externally published | Yes |
Event | 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru Duration: 4 Oct 2020 → 8 Oct 2020 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12263 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 |
---|---|
Country/Territory | Peru |
City | Lima |
Period | 4/10/20 → 8/10/20 |
Bibliographical note
Publisher Copyright:© 2020, Springer Nature Switzerland AG.
Keywords
- Colonoscopy
- Domain transformation
- Generative adversarial network
- Optical flow
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science