Abstract
Rock slope stability is a major concern in mega engineering projects, and it has been a major focus of engineering geology for over three centuries. The toppling failure mode is considered as one of the most complex and challenging to stabilize. The complexity of slope failures increases with a combination of mechanisms and the presence of different geological units and structures. Numerical modeling is a powerful tool for analyzing and simulating rock slope stability. This paper aims to assess and propose stabilization methods for toppling failure and complex toppling failure, using numerical modeling software FLAC 2D. The paper introduces a technique for assessing toppling failure in alternating soft-hard rock bands during adverse conditions and proposes innovative stabilization methods based on simulation effects. The results suggest that numerical modeling software can effectively assess toppling failure, design support, and reinforcement methods, and help predict and reduce the risk of slope collapse in toppling zones through appropriate stabilization techniques.
Original language | English |
---|---|
Title of host publication | 58th US Rock Mechanics / Geomechanics Symposium 2024, ARMA 2024 |
Publisher | American Rock Mechanics Association (ARMA) |
ISBN (Electronic) | 9798331305086 |
DOIs | |
State | Published - 2024 |
Externally published | Yes |
Event | 58th US Rock Mechanics / Geomechanics Symposium 2024, ARMA 2024 - Golden, United States Duration: 23 Jun 2024 → 26 Jun 2024 |
Publication series
Name | 58th US Rock Mechanics / Geomechanics Symposium 2024, ARMA 2024 |
---|
Conference
Conference | 58th US Rock Mechanics / Geomechanics Symposium 2024, ARMA 2024 |
---|---|
Country/Territory | United States |
City | Golden |
Period | 23/06/24 → 26/06/24 |
Bibliographical note
Publisher Copyright:Copyright 2024 ARMA, American Rock Mechanics Association.
ASJC Scopus subject areas
- Geochemistry and Petrology
- Geophysics