Nonsmooth weighted variational inequalities and nonsmooth vector optimization

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we use weighted sum method to study nonsmooth vector variational inequalities and nonsmooth vector optimization problem. In particular, we introduce nonsmooth weighted variational inequalities (in short. NWVI) and study some relationships among XWVT, nonsmooth vector variational inequalities (in short, NWI), nonsmooth weighted optimization problem (in short, NWOP) and nonsmooth vector optimization problem (in short. NVOP). We establish some existence results for solutions of (NWI) and (NWVI) under weighted pseudomonotonicity or densely weighted pseudomonotonicity. As applications of our results, some existence results for solutions of NWOP and NVOP for nondifferentiable functions by using the equivalence relations among NWI, NWVI, XWOP and VOP can be easily derived.

Original languageEnglish
Pages (from-to)667-684
Number of pages18
JournalJournal of Nonlinear and Convex Analysis
Volume16
Issue number4
StatePublished - 2015

Bibliographical note

Publisher Copyright:
© 2015.

Keywords

  • Existences results
  • Nonsmooth vector optimization problems
  • Nonsmooth vector variational inequalities
  • Nonsmooth weighted optimization problem
  • Nonsmooth weighted variational inequalities

ASJC Scopus subject areas

  • Analysis
  • Geometry and Topology
  • Control and Optimization
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Nonsmooth weighted variational inequalities and nonsmooth vector optimization'. Together they form a unique fingerprint.

Cite this