Abstract
Adsorption-based cooling systems are becoming increasingly popular due to a continuous rise in the worldwide demand for refrigeration and air-conditioning. This study aims to enhance the cooling performance of a solar-powered adsorption chiller using a novel multi-walled carbon nanotube (MWCNT)/MIL-100(Fe) composite adsorbent. A numerically validated modeling approach has been employed to evaluate the coefficient of performance (COP) and specific cooling power (SCP) for the two-bed adsorption chiller. For solar energy input, a flat-plate solar collector has been employed with three different configurations of glaze – (a) single-glazed cover, (b) double-glazed cover, and (c) single-glazed cover with transparent insulation material. It has been observed that the MWCNT/MIL-100(Fe) composite adsorbent containing 6.1% MWCNTs results in a maximum achievable cooling power of 455 Wkg−1for the adsorption chiller. The proposed MWCNT/MIL-100(Fe) composite adsorbent can be considered as a successful potential replacement of the traditionally used silica gel- and zeolite-based adsorbents for use in the next generation of high-performance solar adsorption chillers.
Original language | English |
---|---|
Pages (from-to) | 602-612 |
Number of pages | 11 |
Journal | Renewable Energy |
Volume | 109 |
DOIs | |
State | Published - 2017 |
Bibliographical note
Publisher Copyright:© 2017 Elsevier Ltd
Keywords
- Adsorption chiller
- Analytical modeling
- Metal organic frameworks
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment