Mobile parallel manipulators, modelling and data-driven motion planning

Amar Khoukhi*, Mutaz Hamdan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

This paper provides a kinematic and dynamic analysis of mobile parallel manipulators (MPM). The study is conducted on a composed multi-degree of freedom (DOF) parallel robot carried by a wheeled mobile platform. Both positional and differential kinematics problems for the hybrid structure are solved, and the redundancy problem is solved using joint limit secondary criterionbased generalized-pseudo-inverse. A minimum time trajectory parameterization is obtained via cycloidal profile to initialize multi-objective trajectory planning of the MPM. Considered objectives include time energy minimization redundancy resolution and singularity avoidance. Simulation results illustrating the effectiveness of the proposed approach are presented and discussed.This paper provides a kinematic and dynamic analysis of mobile parallel manipulators (MPM). The study is conducted on a composed multi-degree of freedom (DOF) parallel robot carried by a wheeled mobile platform. Both positional and differential kinematics problems for the hybrid structure are solved, and the redundancy problem is solved using joint limit secondary criterionbased generalized-pseudo-inverse. A minimum time trajectory parameterization is obtained via cycloidal profile to initialize multi-objective trajectory planning of the MPM. Considered objectives include time energy minimization redundancy resolution and singularity avoidance. Simulation results illustrating the effectiveness of the proposed approach are presented and discussed.This paper provides a kinematic and dynamic analysis of mobile parallel manipulators (MPM). The study is conducted on a composed multi-degree of freedom (DOF) parallel robot carried by a wheeled mobile platform. Both positional and differential kinematics problems for the hybrid structure are solved, and the redundancy problem is solved using joint limit secondary criterionbased generalized-pseudo-inverse. A minimum time trajectory parameterization is obtained via cycloidal profile to initialize multi-objective trajectory planning of the MPM. Considered objectives include time energy minimization redundancy resolution and singularity avoidance. Simulation results illustrating the effectiveness of the proposed approach are presented and discussed.This paper provides a kinematic and dynamic analysis of mobile parallel manipulators (MPM). The study is conducted on a composed multi-degree of freedom (DOF) parallel robot carried by a wheeled mobile platform. Both positional and differential kinematics problems for the hybrid structure are solved, and the redundancy problem is solved using joint limit secondary criterionbased generalized-pseudo-inverse. A minimum time trajectory parameterization is obtained via cycloidal profile to initialize multi-objective trajectory planning of the MPM. Considered objectives include time energy minimization redundancy resolution and singularity avoidance. Simulation results illustrating the effectiveness of the proposed approach are presented and discussed.

Original languageEnglish
Article number383
JournalInternational Journal of Advanced Robotic Systems
Volume10
DOIs
StatePublished - 7 Nov 2013

Keywords

  • Kinematic redundancy resolution
  • Mobile parallel manipulator (MPM)
  • Off-line trajectory planning

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Mobile parallel manipulators, modelling and data-driven motion planning'. Together they form a unique fingerprint.

Cite this