TY - PAT
T1 - Method for Forming A Sol-Gel Coating Formulation
AU - Suleiman, Rami
AU - Elali, Bassam
AU - Sorour, Ahmad
PY - 2023
Y1 - 2023
N2 - Sol-gel coating formulations including metal oxide particles such as aluminum oxide, calcium oxide, zinc oxide, magnesium oxide, and molybdenum oxide embedded in a hybrid polymer matrix based on a reacted form of a resin composition containing a tetraalkylorthosilicate, an aminoalkylsilane, a dialkoxysilane, and a silanol terminated polydimethylsiloxane. The sol-gel coating formulations are suitable for applications such as anticorrosive protective coatings of metal substrates (e.g. mild steel). These anticorrosive coated metal substrates are evaluated on their hydrophobicity (water contact angle), surface roughness, mechanical strength (e.g. hardness), adhesiveness to the substrate (e.g. critical load), and anticorrosiveness upon exposure to a saline solution (e.g. impedance value).
AB - Sol-gel coating formulations including metal oxide particles such as aluminum oxide, calcium oxide, zinc oxide, magnesium oxide, and molybdenum oxide embedded in a hybrid polymer matrix based on a reacted form of a resin composition containing a tetraalkylorthosilicate, an aminoalkylsilane, a dialkoxysilane, and a silanol terminated polydimethylsiloxane. The sol-gel coating formulations are suitable for applications such as anticorrosive protective coatings of metal substrates (e.g. mild steel). These anticorrosive coated metal substrates are evaluated on their hydrophobicity (water contact angle), surface roughness, mechanical strength (e.g. hardness), adhesiveness to the substrate (e.g. critical load), and anticorrosiveness upon exposure to a saline solution (e.g. impedance value).
M3 - Patent
M1 - US11708507
ER -