Abstract
Logistic hubs play a pivotal role in the last-mile delivery distance; even a slight increment in distance negatively impacts the business of the e-commerce industry while also increasing its carbon footprint. The growth of this industry, particularly after Covid-19, has further intensified the need for optimized allocation of resources in an urban environment. In this study, we use a hybrid approach to optimize the placement of logistic hubs. The approach sequentially employs different techniques. Initially, delivery points are clustered using K-Means in relation to their spatial locations. The clustering method utilizes road network distances as opposed to Euclidean distances. Non-road network-based approaches have been avoided since they lead to erroneous and misleading results. Finally, hubs are located using the P-Median method. The P-Median method also incorporates the number of deliveries and population as weights. Real-world delivery data from Muller and Phipps (M&P) is used to demonstrate the effectiveness of the approach. Serving deliveries from the optimal hub locations results in the saving of 815 (10%) meters per delivery.
Original language | English |
---|---|
Pages (from-to) | 219-226 |
Number of pages | 8 |
Journal | Transportation Research Procedia |
Volume | 84 |
DOIs | |
State | Published - 2025 |
Event | 1st Internation Conference on Smart Mobility and Logistics Ecosystems, SMiLE 2024 - Dhahran, Saudi Arabia Duration: 17 Sep 2024 → 19 Sep 2024 |
Bibliographical note
Publisher Copyright:© 2024 The Authors. Published by ELSEVIER B.V.
Keywords
- K-Means
- Last mile delivery
- Machine Learning
- Optimization
- P-Median
- Urban logistics
ASJC Scopus subject areas
- Transportation