Learning kernel based embeddings in graph neural networks

Nicolò Navarin, Dinh Van Tran, Alessandro Sperduti

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

We investigate whether Graph Convolutional Neural Networks (GCNNs) may benefit from incorporating information conveyed by a state-of-the-art graph kernel in the learning process. We propose a GCNN architecture and a training procedure based on multi-task learning, where we provide supervision not only from the graph labels, but also from the kernel to each layer of the network, achieving state-of-the-art performances on many real-world datasets. We conduct an ablation study to analyze the impact on the predictive performances of each part of our proposal, including a simplified version of our multi-task learning formulation that can, in principle, be applied with a broad family of graph embeddings. Finally, we study how to improve the performance of a model considering graphs coming from related datasets into the training procedure in a semi-supervised learning fashion.

Original languageEnglish
Title of host publicationECAI 2020 - 24th European Conference on Artificial Intelligence, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020 - Proceedings
EditorsGiuseppe De Giacomo, Alejandro Catala, Bistra Dilkina, Michela Milano, Senen Barro, Alberto Bugarin, Jerome Lang
PublisherIOS Press BV
Pages1387-1394
Number of pages8
ISBN (Electronic)9781643681009
DOIs
StatePublished - 24 Aug 2020
Externally publishedYes
Event24th European Conference on Artificial Intelligence, ECAI 2020, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020 - Santiago de Compostela, Online, Spain
Duration: 29 Aug 20208 Sep 2020

Publication series

NameFrontiers in Artificial Intelligence and Applications
Volume325
ISSN (Print)0922-6389
ISSN (Electronic)1879-8314

Conference

Conference24th European Conference on Artificial Intelligence, ECAI 2020, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020
Country/TerritorySpain
CitySantiago de Compostela, Online
Period29/08/208/09/20

Bibliographical note

Publisher Copyright:
© 2020 The authors and IOS Press.

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Learning kernel based embeddings in graph neural networks'. Together they form a unique fingerprint.

Cite this