Intelligent Bi-LSTM with Architecture Optimization for Heart Disease Prediction in WBAN through Optimal Channel Selection and Feature Selection

Muthu Ganesh Veerabaku, Janakiraman Nithiyanantham, Shabana Urooj*, Abdul Quadir Md*, Arun Kumar Sivaraman, Kong Fah Tee

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Wireless Body Area Network (WBAN) is a trending technology of Wireless Sensor Networks (WSN) to enhance the healthcare system. This system is developed to monitor individuals by observing their physical signals to offer physical activity status as a wearable low-cost system that is considered an unremarkable solution for continuous monitoring of cardiovascular health. Various studies have discussed the uses of WBAN in Personal Health Monitoring systems (PHM) based on real-world health monitoring models. The major goal of WBAN is to offer early and fast analysis of the individuals but it is not able to attain its potential by utilizing conventional expert systems and data mining. Multiple kinds of research are performed in WBAN based on routing, security, energy efficiency, etc. This paper suggests a new heart disease prediction under WBAN. Initially, the standard patient data regarding heart diseases are gathered from benchmark datasets using WBAN. Then, the channel selections for data transmission are carried out through the Improved Dingo Optimizer (IDOX) algorithm using a multi-objective function. Through the selected channel, the data are transmitted for the deep feature extraction process using One Dimensional-Convolutional Neural Networks (ID-CNN) and Autoencoder. Then, the optimal feature selections are done through the IDOX algorithm for getting more suitable features. Finally, the IDOX-based heart disease prediction is done by Modified Bidirectional Long Short-Term Memory (M-BiLSTM), where the hyperparameters of BiLSTM are tuned using the IDOX algorithm. Thus, the empirical outcomes of the given offered method show that it accurately categorizes a patient’s health status founded on abnormal vital signs that is useful for providing the proper medical care to the patients.

Original languageEnglish
Article number1167
JournalBiomedicines
Volume11
Issue number4
DOIs
StatePublished - Apr 2023

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

Keywords

  • autoencoder
  • heart disease prediction
  • improved dingo optimizer
  • modified bidirectional long short-term memory
  • one dimensional-convolutional neural network
  • optimal channel selection
  • wireless body area network

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Intelligent Bi-LSTM with Architecture Optimization for Heart Disease Prediction in WBAN through Optimal Channel Selection and Feature Selection'. Together they form a unique fingerprint.

Cite this