In-vitro and in-vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@TiO2 NPs hydrogel membranes for wound dressing

Arooj Ahmed, Muhammad Bilal Khan Niazi*, Zaib Jahan, Tahir Ahmad, Arshad Hussain, Erum Pervaiz, Hussnain Ahmed Janjua, Zakir Hussain

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

109 Scopus citations

Abstract

The present study was focused on the fabrication and characterization of polymeric wound dressings, composed of PVA and Starch. Graphitic carbon nitride (g-C3N4) was incorporated as a filler and Silver deposited-Titania nanoparticles (Ag@TiO2 NPs) as an antibacterial agent. The hydrogel membranes were fabricated by solution casting under ambient conditions. The prepared hydrogels were subjected to various characterizations techniques and obtained data demonstrated good compatibility among the constituents of the membranes. The antibacterial activity was investigated against Escherichia coli and Staphylococcus aureus. The maximum zone of inhibition achieved was 37.33 and 33.25 mm, respectively at the composition PVA/Starch/0.14GCN/0.7Ag@TiO2 NPs. Furthermore, swelling, moisture retention and water vapor transmission results demonstrated that hydrogels were capable of absorbing large volume of wound exudates. Porosity and oxygen permeability results have demonstrated that hydrogels membranes were breathable. Lastly, kinetics of drug release was performed by using various mathematical models where Higuchian model was found to be the best fit. Non-Fickian diffusion mechanism prevailed and a sustained and slow release of nanoparticles was observed. The complete healing was accomplished in seven days. The fabricated hydrogel membranes depicted better healing than conventional cotton gauze wound dressings. The prepared hydrogel membranes have demonstrated all the potential to be used as wound dressing for partial and full thickness excision wounds after complete biological characterization.

Original languageEnglish
Article number109650
JournalEuropean Polymer Journal
Volume130
DOIs
StatePublished - 5 May 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020 Elsevier Ltd

Keywords

  • Hydrophilic
  • Poly(vinyl alcohol)
  • Polymers
  • Swelling
  • Wound dressing

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Organic Chemistry
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'In-vitro and in-vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@TiO2 NPs hydrogel membranes for wound dressing'. Together they form a unique fingerprint.

Cite this