In Situ Electrochemical Conversion of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid by Time-Controlled Aerosol-Assisted Chemical Vapor Deposited FeNi Catalyst

Muthumariappan Akilarasan, Muhammad Ali Ehsan, Muhammad Nawaz Tahir, Mudasir Akbar Shah, Wasif Farooq*, Jerome Morris Princey

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The conversion of 5-hydroxymethylfurfural (HMF) into valuable chemicals, such as 2,5-furandicarboxylic acid (FDCA), is pivotal for sustainable chemical production, offering a renewable pathway to biodegradable plastics and high-value organic compounds. This pioneering study explores the synthesis of FeNi nanostructures via aerosol-assisted chemical vapor deposition (AACVD) for the electrochemical oxidation of HMF to FDCA. By adjusting the deposition time, we developed two distinct nanostructures: FeNi-40, which features nanowires with spherical terminations, and FeNi-80, which features aggregated spherical structures. X-ray diffraction (XRD) confirmed that both nanostructures possess a phase-pure face-centered cubic (FCC) crystal structure. Electrochemical tests conducted using FeNi nanocatalysts on Ni foam revealed that FeNi-40 requires a significantly lower onset potential for HMF oxidation (1.32 V vs RHE) compared to FeNi-80 (1.40 V vs RHE). This difference is attributed to the unique nanowire morphology of FeNi-40, which provides a higher density of active sites and a larger electrochemically active surface area, thereby enhancing the efficiency of the electrochemical process. When tested in an H-type electrolyzer with a Nafion membrane, FeNi-40 demonstrated a remarkable Faradaic efficiency of 96.42% and a high product yield, underscoring the potential of morphology-controlled FeNi nanostructures to enhance the efficiency of sustainable electrochemical processes significantly.

Original languageEnglish
Pages (from-to)42766-42777
Number of pages12
JournalACS Omega
Volume9
Issue number42
DOIs
StatePublished - 22 Oct 2024

Bibliographical note

Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'In Situ Electrochemical Conversion of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid by Time-Controlled Aerosol-Assisted Chemical Vapor Deposited FeNi Catalyst'. Together they form a unique fingerprint.

Cite this