Implicit relaxed and hybrid methods with regularization for minimization problems and asymptotically strict pseudocontractive mappings in the intermediate sense

Lu Chuan Ceng, Qamrul Hasan Ansari, Ching Feng Wen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

We first introduce an implicit relaxed method with regularization for finding a common element of the set of fixed points of an asymptotically strict pseudocontractive mapping S in the intermediate sense and the set of solutions of the minimization problem (MP) for a convex and continuously Frechet differentiable functional in the setting of Hilbert spaces. The implicit relaxed method with regularization is based on three well-known methods: the extragradient method, viscosity approximation method, and gradient projection algorithm with regularization. We derive a weak convergence theorem for two sequences generated by this method. On the other hand, we also prove a new strong convergence theorem by an implicit hybrid method with regularization for the MP and the mapping S. The implicit hybrid method with regularization is based on four well-known methods: the CQ method, extragradient method, viscosity approximation method, and gradient projection algorithm with regularization.

Original languageEnglish
Article number854297
JournalAbstract and Applied Analysis
Volume2013
DOIs
StatePublished - 2013

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Implicit relaxed and hybrid methods with regularization for minimization problems and asymptotically strict pseudocontractive mappings in the intermediate sense'. Together they form a unique fingerprint.

Cite this