Abstract
In this paper, the impact mechanisms of a water droplet on hydrophobized micro-post array surfaces are examined and the influence of micro-post arrays spacing on the droplet behavior in terms of spreading, retraction, and rebounding is investigated. Impacting droplet behavior was recorded using a high-speed facility and flow generated in the droplet fluid was simulated in 3D geometry accommodating conditions of the experiments. Micro-post arrays were initially formed lithographically on silicon wafer surfaces and, later, replicated by polydimethylsiloxane (PDMS). The replicated micro-post arrays surfaces were hydrophobized through coating by functionalized nano-silica particles. Hydrophobized surfaces result in a contact angle of 153◦ ± 3◦ with a hysteresis of 3◦ ± 1◦. The predictions of the temporal behavior of droplet wetting diameter during spreading agree with the experimental data. Increasing micro-post arrays spacing reduces the maximum spreading diameter on the surface; in this case, droplet fluid penetrated micro-posts spacing creates a pinning effect while lowering droplet kinetic energy during the spreading cycle. Flow circulation results inside the droplet fluid in the edge region of the droplet during the spreading period; however, opposing flow occurs from the outer region towards the droplet center during the retraction cycle. This creates a stagnation zone in the central region of the droplet, which extends towards the droplet surface onset of droplet rebounding. Impacting droplet mitigates dust from hydrophobized micro-post array surfaces, and increasing droplet Weber number increases the area of dust mitigated from micro-post arrays surfaces.
Original language | English |
---|---|
Article number | 1377 |
Journal | Coatings |
Volume | 11 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2021 |
Bibliographical note
Publisher Copyright:© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- Droplet impact
- Dust mitigation
- Hydrophobic
- Micro-post arrays
ASJC Scopus subject areas
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Materials Chemistry