Identity enhanced residual image denoising

Saeed Anwar, Cong Phuoc Huynh, Fatih Porikli

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Scopus citations

Abstract

We propose to learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules and residual on the residual architecture for image denoising. Our network structure possesses three distinctive features that are important for the noise removal task. Firstly, each unit employs identity mappings as the skip connections and receives pre-activated input to preserve the gradient magnitude propagated in both the forward and backward directions. Secondly, by utilizing dilated kernels for the convolution layers in the residual branch, each neuron in the last convolution layer of each module can observe the full receptive field of the first layer. Lastly, we employ the residual on the residual architecture to ease the propagation of the high-level information. Contrary to current state-of-the-art real denoising networks, we also present a straightforward and single-stage network for real image denoising.The proposed network produces remarkably higher numerical accuracy and better visual image quality than the classical state-of-the-art and CNN algorithms when being evaluated on the three conventional benchmark and three real-world datasets.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020
PublisherIEEE Computer Society
Pages2201-2210
Number of pages10
ISBN (Electronic)9781728193601
DOIs
StatePublished - Jun 2020
Externally publishedYes
Event2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020 - Virtual, Online, United States
Duration: 14 Jun 202019 Jun 2020

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2020-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020
Country/TerritoryUnited States
CityVirtual, Online
Period14/06/2019/06/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Identity enhanced residual image denoising'. Together they form a unique fingerprint.

Cite this