Hydrothermal synthesis of CoyZnyMn1-2yFe2O4 nanoferrites: Magneto-optical investigation

S. Asiri, M. Sertkol, S. Guner, H. Gungunes, K. M. Batoo, T. A. Saleh, H. Sozeri, M. A. Almessiere, A. Manikandan, A. Baykal*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

200 Scopus citations

Abstract

Manganese ferrites nanoparticles (NPs) substituted with both Co2+ and Zn2+ simultaneously (CoyZnyMn1-2yFe2O4 NPs for y=0.0 to 0.5), have been produced by hydrothermal approach. The substitution with both Co2+ and Zn2+ ions on the structure, spectroscopic and magneto-optical properties of nanocrystalline MnFe2O4 spinel ferrites have been analyzed in detail. The formation of spinel phase and structural changes induced by Co2+ and Zn2+ ions substitutions were confirmed by X-ray diffraction studies. Rietveld refinement revealed the cubic spinel phase for all products (minor amount of Fe2O3). Lattice constant and crystallite size were found to decrease from 8.478 to 8.370 Å and from 14.68 to 8.22 nm, respectively with increasing substitution of Co2+ and Zn2+ ions. HR-SEM and HR-TEM micrographs revealed the high homogeneity cubic structure of samples. The hyperfine magnetic field values for all products after Mn2+, Zn2+ and Co2+ ions substitution were determined by Mössbauer analysis. The estimated optical Eg (Energy band gap) values are in the range of 1.41–1.54 eV for the samples. The smaller Eg values are mainly attributed to greater particle size and decreasing quantum confinement effect.

Original languageEnglish
Pages (from-to)5751-5759
Number of pages9
JournalCeramics International
Volume44
Issue number5
DOIs
StatePublished - 1 Apr 2018

Bibliographical note

Publisher Copyright:
© 2017 Elsevier Ltd and Techna Group S.r.l.

Keywords

  • BET analysis
  • Magnetic nanoparticles
  • Magnetic properties
  • Optical analysis
  • Spinel ferrites

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Process Chemistry and Technology
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Hydrothermal synthesis of CoyZnyMn1-2yFe2O4 nanoferrites: Magneto-optical investigation'. Together they form a unique fingerprint.

Cite this