Abstract
Photovoltaic (PV) systems are the most promising technology for residential installation as an alternative source of energy. To interface the primary source of PV to the electrical grid, an LCL-filtered inverter is being broadly adopted due to its low volume compared to the L-filtered one and the superior ability to filter high-frequency harmonics. In this context, this paper proposes highly accurate digital current controllers for single-phase LCL-filtered grid-connected inverters. The proposed controllers are: Integral-single-lead, integral double-lead, integral double-lead taking into account the effect of pulse width modulation (PWM) delay and the proportional-resonant (PR). These controllers are different from the traditional Proportional-Integral (PI), Proportional-Derivative (PD), and Proportional-Integral-Derivative (PID). One of the novelties of this paper is the detailed, step-by-step procedure for tuning each parameter of the proposed digital controllers considering the dynamic behavior of the LCL filter. The proposed PR has a different and more straightforward tuning methodology than those procedures commonly found in the literature. Therefore, this paper is an attractive tool for a fast, accurate, and reliable way to tune digital current controllers for a single-phase LCL-filtered grid-connected inverter. The controllers were verified in the digital signal controller (DSC) TMS320F28335 while the power structure runs in a hardware-in-loop (HIL device). Results show the efficacy of the proposed controllers.
Original language | English |
---|---|
Pages (from-to) | 12-36 |
Number of pages | 25 |
Journal | Electricity |
Volume | 1 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2020 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2020 by the authors.
Keywords
- current controller
- LCL filter
- power inverter
- PV systems
ASJC Scopus subject areas
- Energy (miscellaneous)
- Electrical and Electronic Engineering