High-temperature solar receiver integrated with a short-term storage system

Ambra Giovannelli*, Muhammad Anser Bashir, Erika Maria Archilei

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

16 Scopus citations

Abstract

Small-Scale Concentrated Solar Power Plants could have a potential market for off-grid applications in rural contexts with limited access to the electrical grid and favorable environmental characteristics. Some Small-Scale plants have already been developed, like the 25-30 kWe Dish-Stirling engine. Other ones are under development as, for example, plants based on Parabolic Trough Collectors coupled with Organic Rankine Cycles. Furthermore, the technological progress achieved in the development of new small high-temperature solar receiver, makes possible the development of interesting systems based on Micro Gas Turbines coupled with Dish collectors. Such systems could have several advantages in terms of costs, reliability and availability if compared with Dish-Stirling plants. In addition, Dish-Micro Gas Turbine systems are expected to have higher performance than Solar Organic Rankine Cycle plants. The present work focuses the attention on some challenging aspects related to the design of small high-temperature solar receivers for Dish-Micro Gas Turbine systems. Natural fluctuations in the solar radiation can reduce system performance and damage seriously the Micro Gas Turbine. To stabilize the system operation, the solar receiver has to assure a proper thermal inertia. Therefore, a solar receiver integrated with a short-term storage system based on high-temperature phase-change materials is proposed in this paper. Steady-state and transient analyses (for thermal storage charge and discharge phases) have been carried out using the commercial CFD code Ansys-Fluent. Results are presented and discussed.

Original languageEnglish
Title of host publicationSolarPACES 2016
Subtitle of host publicationInternational Conference on Concentrating Solar Power and Chemical Energy Systems
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735415225
DOIs
StatePublished - 27 Jun 2017
Externally publishedYes
Event22nd International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2016 - Abu Dhabi, United Arab Emirates
Duration: 11 Oct 201614 Oct 2016

Publication series

NameAIP Conference Proceedings
Volume1850
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference22nd International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2016
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period11/10/1614/10/16

Bibliographical note

Publisher Copyright:
© 2017 Author(s).

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'High-temperature solar receiver integrated with a short-term storage system'. Together they form a unique fingerprint.

Cite this