Graphene surface reinforcement of iron

Pengjie Wang, Qiang Cao*, Yuping Yan, Yangtian Nie, Sheng Liu, Qing Peng

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Graphene is an ideal material in the reinforcement of metal-matrix composites owing to its outstanding mechanical and physical properties. Herein, we have investigated the surface enhancement of iron via a computational nanoindentation process using molecular dynamics simulations. The findings of our study show that graphene can enhance the critical yield strength, hardness and elastic modulus of the composite to different degrees with the change of the number of graphene layers. In the six tested models, the composite with trilayer graphene on the surface produces the strongest reinforcement, with an increased magnitude of 432.1% and 169.5% in the hardness and elastic modulus, respectively, compared with pure iron. Furthermore, it is revealed that high temperature could weaken the elastic bearing capacity of the graphene, resulting in a decrease on the elastic mechanical properties of the graphene/Fe composite.

Original languageEnglish
JournalNanomaterials
Volume9
Issue number1
DOIs
StatePublished - 1 Jan 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Critical yield strength
  • Elastic modulus
  • Graphene/Fe composite
  • Hardness
  • Nanoindentation

ASJC Scopus subject areas

  • General Chemical Engineering
  • General Materials Science

Fingerprint

Dive into the research topics of 'Graphene surface reinforcement of iron'. Together they form a unique fingerprint.

Cite this