Floorplan Embedding with Latent Semantics and Human Behavior Annotations

Vahid Azizi, Muhammad Usman, Samarth Patel, Davide Schaumann, Honglu Zhou, Petros Faloutsos, Mubbasir Kapadia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Floorplans provide top-view representations of buildings that highlight key relationships between spaces and building components. In the last few decades, different approaches have been proposed to compare and catalogue different floorplans for design exploration purposes. Some approaches have considered floorplans as images, while others represented them as graphs. However, both image and graph-based approaches have failed to extract and utilize essential low-level space semantics and structural features. Further, they do not encode information about space utilization determined by people movement and activities in space, which are critical to analyze a building layout. To address these issues, we use deep learning techniques to develop a floorplan embedding – a latent representations of floorplans, which encodes multiple features. Specifically, we propose a novel framework that uses an attributed graph as an intermediate representation to encode space semantics, structural information and crowd behavioral features. We train Long Short-Term Memory (LSTM) autoencoders to represent these graphs as vectors in a continuous space. In addition, we contribute a floorplan dataset augmented with semantic and simulation-generated behavioral features. These representations spark new opportunities for next-gen design applications like clustering, design exploration tools and recommendations. Three different use cases are studied to show the performance of this method.

Original languageEnglish
Title of host publicationSimAUD 2020
Subtitle of host publicationProceedings of the 11th Annual Symposium on Simulation for Architecture and Urban Design
PublisherAssociation for Computing Machinery, Inc
ISBN (Electronic)9781565553712
StatePublished - 25 May 2020
Externally publishedYes
Event11th Annual Symposium on Simulation for Architecture and Urban Design, SimAUD 2020 - Virtual, Online, Austria
Duration: 25 May 202027 May 2020

Publication series

NameSimAUD 2020: Proceedings of the 11th Annual Symposium on Simulation for Architecture and Urban Design

Conference

Conference11th Annual Symposium on Simulation for Architecture and Urban Design, SimAUD 2020
Country/TerritoryAustria
CityVirtual, Online
Period25/05/2027/05/20

Bibliographical note

Publisher Copyright:
© 2020 Society for Modeling & Simulation International (SCS)

Keywords

  • Attributed Graph
  • Design Exploration
  • Design Semantic Features
  • Floorplan Embedding
  • Human Behavioral Features
  • LSTM Autoencoder

ASJC Scopus subject areas

  • History
  • Conservation
  • Architecture
  • Nature and Landscape Conservation
  • Geography, Planning and Development
  • Urban Studies

Fingerprint

Dive into the research topics of 'Floorplan Embedding with Latent Semantics and Human Behavior Annotations'. Together they form a unique fingerprint.

Cite this