Abstract
The contamination of water due to present of dyes, poses serious health problems. Therefore, treatment of contaminated water is necessary to resolve this problem. A tailored co-precipitation technique has been successfully used to prepare Fe3O4-multiwalled Carbon Nanotubes (MWCNTs)-Bentonite nanocomposite. The methylene blue present in aqueous solutions was removed using synthesized nanocomposite as adsorbent. The synthesized novel nanocomposite was analyzed by various characterization techniques. The scanning electron microscope analysis shows that Bentonite and Fe3O4 nanoparticles are well decorated with the MWCNTs matrix. The nanocomposite exhibited a high BET surface area of 204.01 m2/g with a pore volume of 0.367 cm3/g. The BJH adsorption average pore diameter was analyzed to be 7.2 nm. Moreover, the adsorption model was in agreement with the Redlich-Peterson model with adsorption capacity of 48.2 mg/g with a high nonlinear regression coefficient (R2 = 0.985) and a low chi-square value (χ2 = 6.18). Kinetics data were described well by pseudo-first-order and pseudo second order, models with a high non-linear regression coefficient (R2 = 0.993). Adsorption of MB dye was determined to be a non-spontaneous and endothermic process since the values of ΔG, and ΔH were positive, and the entropy value was negative. Thus, the synthesized nanocomposite established itself as a promising candidate for the water treatment process.
Original language | English |
---|---|
Article number | 137824 |
Journal | Chemosphere |
Volume | 316 |
DOIs | |
State | Published - Mar 2023 |
Bibliographical note
Publisher Copyright:© 2023 Elsevier Ltd
Keywords
- Adsorbent
- Bentonite clay
- FeO-multiwalled Carbon Nanotubes (MWCNTs)
- Methylene blue
- aqueous solutions
- wastewater treatment
ASJC Scopus subject areas
- Environmental Engineering
- Environmental Chemistry
- General Chemistry
- Pollution
- Public Health, Environmental and Occupational Health
- Health, Toxicology and Mutagenesis