TY - JOUR
T1 - Feasibility of the Optimal Design of AI-Based Models Integrated with Ensemble Machine Learning Paradigms for Modeling the Yields of Light Olefins in Crude-to-Chemical Conversions
AU - Usman, A. G.
AU - Tanimu, Abdulkadir
AU - Abba, S. I.
AU - Isik, Selin
AU - Aitani, Abdullah
AU - Alasiri, Hassan
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society.
PY - 2023/10/31
Y1 - 2023/10/31
N2 - The prediction of the yields of light olefins in the direct conversion of crude oil to chemicals requires the development of a robust model that represents the crude-to-chemical conversion processes. This study utilizes artificial intelligence (AI) and machine learning algorithms to develop single and ensemble learning models that predict the yields of ethylene and propylene. Four single-model AI techniques and four ensemble paradigms were developed using experimental data derived from the catalytic cracking experiments of various crude oil fractions in the advanced catalyst evaluation reactor unit. The temperature, feed type, feed conversion, total gas, dry gas, and coke were used as independent variables. Correlation matrix analyses were conducted to filter the input combinations into three different classes (M1, M2, and M3) based on the relationship between dependent and independent variables, and three performance metrics comprising the coefficient of determination (R2), Pearson correlation coefficient (PCC), and mean square error (MSE) were used to evaluate the prediction performance of the developed models in both calibration and validations stages. All four single models have very low R2 and PCC values (as low as 0.07) and very high MSE values (up to 4.92 wt %) for M1 and M2 in both calibration and validation phases. However, the ensemble ML models show R2 and PCC values of 0.99-1 and an MSE value of 0.01 wt % for M1, M2, and M3 input combinations. Therefore, ensemble paradigms improve the performance accuracy of single models by up to 58 and 62% in the calibration and validation phases, respectively. The ensemble paradigms predict with high accuracy the yield of ethylene and propylene in the catalytic cracking of crude oil and its fractions.
AB - The prediction of the yields of light olefins in the direct conversion of crude oil to chemicals requires the development of a robust model that represents the crude-to-chemical conversion processes. This study utilizes artificial intelligence (AI) and machine learning algorithms to develop single and ensemble learning models that predict the yields of ethylene and propylene. Four single-model AI techniques and four ensemble paradigms were developed using experimental data derived from the catalytic cracking experiments of various crude oil fractions in the advanced catalyst evaluation reactor unit. The temperature, feed type, feed conversion, total gas, dry gas, and coke were used as independent variables. Correlation matrix analyses were conducted to filter the input combinations into three different classes (M1, M2, and M3) based on the relationship between dependent and independent variables, and three performance metrics comprising the coefficient of determination (R2), Pearson correlation coefficient (PCC), and mean square error (MSE) were used to evaluate the prediction performance of the developed models in both calibration and validations stages. All four single models have very low R2 and PCC values (as low as 0.07) and very high MSE values (up to 4.92 wt %) for M1 and M2 in both calibration and validation phases. However, the ensemble ML models show R2 and PCC values of 0.99-1 and an MSE value of 0.01 wt % for M1, M2, and M3 input combinations. Therefore, ensemble paradigms improve the performance accuracy of single models by up to 58 and 62% in the calibration and validation phases, respectively. The ensemble paradigms predict with high accuracy the yield of ethylene and propylene in the catalytic cracking of crude oil and its fractions.
UR - http://www.scopus.com/inward/record.url?scp=85176806691&partnerID=8YFLogxK
U2 - 10.1021/acsomega.3c05227
DO - 10.1021/acsomega.3c05227
M3 - Article
AN - SCOPUS:85176806691
SN - 2470-1343
VL - 8
SP - 40517
EP - 40531
JO - ACS Omega
JF - ACS Omega
IS - 43
ER -