Estimating electrical resistivity from logging data for oil wells using machine learning

Abdulrahman Al-Fakih, Ahmed Farid Ibrahim*, Salaheldin Elkatatny, Abdulazeez Abdulraheem

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Formation resistivity is crucial for calculating water saturation, which, in turn, is used to estimate the stock-tank oil initially in place. However, obtaining a complete resistivity log can be challenging due to high costs, equipment failure, or data loss. To overcome this issue, this study introduces novel machine learning models that can be used to predict the electrical resistivity of oil wells, using conventional well logs. The analysis utilized gamma-ray (GR), delta time compressional logs (DTC), sonic shear log (DSTM), neutron porosity, and bulk density. The study utilized a dataset of 3529 logging data points from horizontal oil carbonate wells which were used to develop different machine learning models using random forest (RF) and decision tree (DT) algorithms. The obtained results showed that both models can predict electrical resistivity with high accuracy, over 0.94 for training and testing data. Comparing the models based on accuracy and consistency revealed that the RF model had a slight advantage over the DT model. Based on the data analysis, it was found that the formation resistivity is more significantly impacted by GR logs compared to DTC logs. These new ML models offer a low-cost and practical alternative to estimate well resistivity in oil wells, providing valuable information for geophysical and geological interpretation.

Original languageEnglish
Pages (from-to)1453-1461
Number of pages9
JournalJournal of Petroleum Exploration and Production Technology
Volume13
Issue number6
DOIs
StatePublished - Jun 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

Keywords

  • Electrical resistivity
  • LLD
  • Machine learning models
  • Well logging

ASJC Scopus subject areas

  • Geotechnical Engineering and Engineering Geology
  • General Energy

Fingerprint

Dive into the research topics of 'Estimating electrical resistivity from logging data for oil wells using machine learning'. Together they form a unique fingerprint.

Cite this