Enhancing brain tumor classification in MRI scans with a multi-layer customized convolutional neural network approach

Eid Albalawi*, Arastu Thakur, D. Ramya Dorai, Surbhi Bhatia Khan, T. R. Mahesh, Ahlam Almusharraf, Khursheed Aurangzeb, Muhammad Shahid Anwar*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Background: The necessity of prompt and accurate brain tumor diagnosis is unquestionable for optimizing treatment strategies and patient prognoses. Traditional reliance on Magnetic Resonance Imaging (MRI) analysis, contingent upon expert interpretation, grapples with challenges such as time-intensive processes and susceptibility to human error. Objective: This research presents a novel Convolutional Neural Network (CNN) architecture designed to enhance the accuracy and efficiency of brain tumor detection in MRI scans. Methods: The dataset used in the study comprises 7,023 brain MRI images from figshare, SARTAJ, and Br35H, categorized into glioma, meningioma, no tumor, and pituitary classes, with a CNN-based multi-task classification model employed for tumor detection, classification, and location identification. Our methodology focused on multi-task classification using a single CNN model for various brain MRI classification tasks, including tumor detection, classification based on grade and type, and tumor location identification. Results: The proposed CNN model incorporates advanced feature extraction capabilities and deep learning optimization techniques, culminating in a groundbreaking paradigm shift in automated brain MRI analysis. With an exceptional tumor classification accuracy of 99%, our method surpasses current methodologies, demonstrating the remarkable potential of deep learning in medical applications. Conclusion: This study represents a significant advancement in the early detection and treatment planning of brain tumors, offering a more efficient and accurate alternative to traditional MRI analysis methods.

Original languageEnglish
Article number1418546
JournalFrontiers in Computational Neuroscience
Volume18
DOIs
StatePublished - 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
Copyright © 2024 Albalawi, Thakur, Dorai, Bhatia Khan, Mahesh, Almusharraf, Aurangzeb and Anwar.

Keywords

  • classification of medical images
  • convolutional neural networks
  • deep learning
  • diagnosis of brain tumors
  • MRI imaging

ASJC Scopus subject areas

  • Neuroscience (miscellaneous)
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Enhancing brain tumor classification in MRI scans with a multi-layer customized convolutional neural network approach'. Together they form a unique fingerprint.

Cite this