Enhanced mercury removal from wastewater using thiol-functionalized UiO-66-NH2 MOF: experimental and theoretical insights

Ismail Abdulazeez, Hamza A. Asmaly, Othman Charles S. Al-Hamouz, Nadeem Baig*, Khaled M. AlAqad, Mukhtar A. Raji, Khaled H. Ahmed*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Disposal of mercury ions and Hg(ii) in industrial wastewater poses serious risks to humans and aquatic organisms owing to their bio-accumulative nature. Despite several reports on the adsorptive removal of Hg(ii) ions from water, designing effective, selective, and highly stable adsorbents remains a great challenge. In this study, we reported the systematic design of thiol-functionalized UiO-66-NH2 MOF, namely, UiO-66-NH2-(MAA)2, using a modulator synthetic strategy. The synthesized MOF exhibited a high Hg(ii) uptake of 890 mg g−1, remarkable selectivity with a distribution coefficient Kd of 6.0 × 106 mL g−1, one of the highest reported for Hg(ii) ions, and fast adsorption kinetics, removing 99.9% of Hg(ii) ions (Co = 10 mg L−1) in just 10 min. The synthesized MOF also conformed to the Freundlich adsorption isotherm and followed pseudo-second-order adsorption kinetics, with a rate constant k2, of 9.611 g mg−1 min−1 at an extremely low dosage of 2 mg. Meanwhile, excellent recyclability with negligible loss in efficiency was achieved during 5 consecutive cycles of Hg(ii) removal on the UiO-66-NH2-(MAA)2 MOF. Using the BET adsorption isotherms, it was confirmed that the structural integrity of the MOF was retained after several cycles of adsorption and desorption. First-principles DFT simulations revealed that thiol functionalization resulted in the significant enhancement of the charge transfer characteristics of the UiO-66-NH2 MOF, forming stable complexes with Hg(ii) ions. This prevented leaching and the constitution of secondary pollution during the adsorption process. This study demonstrated the rational design of highly selective adsorbents for Hg(ii) removal, which could be employed in the practical remediation of Hg(ii) from real wastewater.

Original languageEnglish
Pages (from-to)3096-3108
Number of pages13
JournalNew Journal of Chemistry
Volume49
Issue number8
DOIs
StatePublished - 20 Jan 2025

Bibliographical note

Publisher Copyright:
© 2025 The Royal Society of Chemistry.

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Enhanced mercury removal from wastewater using thiol-functionalized UiO-66-NH2 MOF: experimental and theoretical insights'. Together they form a unique fingerprint.

Cite this