TY - JOUR
T1 - Effect of the Precursor Chemistry on the Crystallization of Triple Cation Mixed Halide Perovskites
AU - Singh, Mriganka
AU - Abdelsamie, Maged
AU - Li, Qihua
AU - Kodalle, Tim
AU - Lee, Do Kyoung
AU - Arnold, Simon
AU - Ceratti, Davide R.
AU - Slack, Jonathan L.
AU - Schwartz, Craig P.
AU - Brabec, Christoph J.
AU - Tao, Shuxia
AU - Sutter-Fella, Carolin M.
N1 - Publisher Copyright:
© 2023 American Chemical Society.
PY - 2023/9/26
Y1 - 2023/9/26
N2 - Triple cation, mixed halide perovskite compositions have been reported to be more thermally stable, exhibit fewer phase impurities, and show higher power conversion efficiency and better reproducibility than single cation perovskites. In this work, we explain the formation of Cs0.05FA0.81MA0.14Pb(I0.85Br0.15)3 via a multimodal in situ study combining structural information from synchrotron grazing-incidence wide-angle X-ray scattering (GIWAXS) and optical properties from photoluminescence (PL) spectroscopy with density functional theory calculations (DFT). The focus here is on the effects of the solvent and antisolvent during crystallization. The predominantly used solvents N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and the antisolvent chlorobenzene (CB) as well as the solvent-antisolvent-precursor interactions are investigated. Given the high elemental complexity and mutual interdependencies between solvent, antisolvent, and perovskite precursors, we found significant differences in the crystallization pathways. DMF-pure precursors show the formation of the DMF-containing intermediate phase and the nucleation of compositionally distinct perovskite phases, while when DMSO is added, only crystalline α- and δ-phases were found. In addition, the presence of DMSO helps the formation of α-perovskite. Coordination energy and bond order (BO) calculations support our experimental findings. Dripping of CB induces nucleation at room temperature, slows the α-phase formation rate, and appears to reduce the nucleation radius. These findings provide novel insights into solvent, antisolvent, and perovskite precursor interactions and their formation pathways. The complexity of interactions between solvents and reagents highlights the importance of understanding these effects to further improve the reproducibility and optimize processing conditions.
AB - Triple cation, mixed halide perovskite compositions have been reported to be more thermally stable, exhibit fewer phase impurities, and show higher power conversion efficiency and better reproducibility than single cation perovskites. In this work, we explain the formation of Cs0.05FA0.81MA0.14Pb(I0.85Br0.15)3 via a multimodal in situ study combining structural information from synchrotron grazing-incidence wide-angle X-ray scattering (GIWAXS) and optical properties from photoluminescence (PL) spectroscopy with density functional theory calculations (DFT). The focus here is on the effects of the solvent and antisolvent during crystallization. The predominantly used solvents N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and the antisolvent chlorobenzene (CB) as well as the solvent-antisolvent-precursor interactions are investigated. Given the high elemental complexity and mutual interdependencies between solvent, antisolvent, and perovskite precursors, we found significant differences in the crystallization pathways. DMF-pure precursors show the formation of the DMF-containing intermediate phase and the nucleation of compositionally distinct perovskite phases, while when DMSO is added, only crystalline α- and δ-phases were found. In addition, the presence of DMSO helps the formation of α-perovskite. Coordination energy and bond order (BO) calculations support our experimental findings. Dripping of CB induces nucleation at room temperature, slows the α-phase formation rate, and appears to reduce the nucleation radius. These findings provide novel insights into solvent, antisolvent, and perovskite precursor interactions and their formation pathways. The complexity of interactions between solvents and reagents highlights the importance of understanding these effects to further improve the reproducibility and optimize processing conditions.
UR - http://www.scopus.com/inward/record.url?scp=85174302435&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.3c00799
DO - 10.1021/acs.chemmater.3c00799
M3 - Article
AN - SCOPUS:85174302435
SN - 0897-4756
VL - 35
SP - 7450
EP - 7459
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 18
ER -