Abstract
Ti–Ni powder compacts were prepared by mechanical alloying (MA), followed by hot isostatic pressing (HIP). Afterwards, the samples were sintered at different temperatures (950, 1050, 1150 and 1250 °C). Microhardness, density, crystallite size as well as microstrain of the sintered samples were measured and analyzed. Wear characteristics in phosphate-buffered saline (PBS) solution was tested under different applied loads of 2 N, 10 N, and 20 N, respectively. The results indicated that the crystallite size continuously decreases with increasing sintering temperature and reaches the lowest value of 31.3 nm at 1250 °C. The relative density of the sample sintered at 1250 °C is 98.0%. Moreover, the higher sintering temperatures lead to the higher relative density and the increase in hardness and young’s modulus of the sample. At the same time the friction coefficient and wear rate were lower for the samples sintered at 1250 °C. This improvement in friction and wear resistance is attributed to the grain size refinement. Ti–Ni sintered at 1250 °C showed good tribological performance under all test conditions.
Original language | American English |
---|---|
Journal | Minerals, Metals and Materials Series |
State | Published - 12 Feb 2020 |
Keywords
- Ti–Ni
- Nanobiomaterials
- Tribological behaviour
- Sintering
- Biomedical applications